

National Perinatal Epidemiology Unit

Nuffield Department of Population Health

Mapping non-preference onto preference-based PROMs

Patient-reported outcomes measures (PROMs) in health economics

Assoc. Professor Oliver Rivero-Arias Royal Statistical Society Seminar RSS Primary Health Care Special Interest Group 18 June 2015

Outline of seminar

- What is meant by "Mapping"?
- Mapping studies in the literature and usage in health technology assessment
- Statistical methods to map non-preference to preference-based PROMs
 - Statistical modelling (direct vs indirect mapping)
 - Three case empirical mapping studies
- The MAPS reporting statement

What is meant by "Mapping"?

Source measure

Target measure

Algorithm: statistical association or more complex series of operations

Mapping in the published literature

- Brazier, J. E., Yang, Y., Tsuchiya, A. and Rowen, D. L. (2010). A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. Eur J Health Econ; 11(2): 215-225.
 - Searches conducted from 1996-2007
 - Identified 30 studies.
 - Most common target measure was the EQ-5D-3L.
 - Comparisons across studies limited.

Mapping in the published literature

 Dakin, H. (2013). Review of studies mapping from quality of life or clinical measures to EQ-5D: an online database. Health Qual Life Outcomes; 11: 151.

The use of mapping in NICE technology appraisals

 Longworth, L. and Rowen, D. (2013). Mapping to obtain EQ-5D utility values for use in NICE health technology assessments. Value Health; 16(1): 202-210.

2004-2010

90 submissions

23 using mapping

25%

2004-2008

46 submissions

19 using mapping

41%

2008-2010

44 submissions

4 using mapping

9%

Steps to develop mapping algorithms

- I. Rationale for the mapping study
- 2. Identification of source and target measures
- 3. Identification of estimation and external validation sample
- 4. Exploratory data analysis
- 5. Statistical modelling
- 6. Estimation of predicted scores or utilities
- 7. Validation methods
- 8. Measures of model performance
- 9. Dealing with uncertainty

Statistical Modelling

Direct mapping Indirect or response mapping

Statistical Modelling Direct mapping

- Dependent variable using a preference-based score
 - EQ-5D-3L index has been widely used in direct mapping studies

Statistical Modelling Direct mapping

Distribution of EQ-5D-3L values

Asthma (n=2,935)

30%

25%

불 20%

a 15%

od 10%

5%

0

Chest pain (n=679)

Cronic obstructive pulmonary disease

(n=185)

Clodronate (n=320)

EQ-5D score

a? at a?

0?

. .

20

24

Irritable bowel syndrome (n=374)

Source: Hernandez Alava, M., Wailoo, A. J. and Ara, R. (2012). Tails from the peak district: adjusted limited dependent variable mixture models of EQ-5D questionnaire health state utility values. Value Health; 15(3): 550-561.

10

EQ-5D scor

05 05

30%

1 25%

E 20%

8 15%

£ 10%

5%

of 0?

10 40

EQ-5D score

Statistical Modelling Indirect or response mapping

- Dependent variable using response variables rather than overall index
 - EQ-5D-3L responses have been widely used in response mapping
- Ordered and multinomial logit/probit models

Statistical Modelling Indirect mapping (multinomial logit)

Statistical Modelling Indirect or response mapping

- Dependent variable using response variables rather than overall index
 - EQ-5D-3L responses have been widely used in response mapping
- Ordered and multinomial logit models
- Probabilistic model and different methods available to calculate utility predictions:
 - Higher or most-likely probability biased and not recommended
 - Expected value (equivalent to using an infinite number of Monte Carlo draws) – unbiased and recommended

3 case studies

Comparison of direct and indirect methods:

- I. Mapping from Health Assessment Questionnaire (HAQ) to EQ-5D-3L
- 2. Mapping from Parkinson's Disease Questionnaire (PDQ-39) to EQ-5D-3L
- 3. Mapping from Oxford Hip Score (OHS) to EQ-5D-3L

What will be presented?

- I. Mean (SD) of actual EQ-5D-3L in estimation and external validation dataset (if available)
- 2. Measures of prediction accuracy: mean squared error (MSE) or root mean squared error (RMSE)

HAQ to EQ-5D-3L Hernandez-Alava et al 2014

	Estimation dataset (n = 100,398)	External validation dataset (n=n/a)
	Mean	Mean
Actual EQ-5D-3L index	0.665	n/a
	RMSE	RMSE
Direct mapping		
Simple linear regression	0.175	n/a
Adjusted limited mixture models	0.169	n/a
Indirect mapping		
Generalised ordered probit	0.171	n/a

n/a: not available

Source: Hernández Alava, M., Wailoo, A., Wolfe, F. and Michaud, K. (2014). A Comparison of Direct and Indirect Methods for the Estimation of Health Utilities from Clinical Outcomes. Medical Decision Making; 34(7): 919-930.

PDQ-39 to EQ-5D-3L Kent et al 2015

	Estimation dataset (n = 9,123)	External validation dataset (n=719)
	Mean (SD)	Mean (SD)
Actual EQ-5D-3L index	0.60 (0.27)	0.51 (0.27)
	MSE	MSE
Direct mapping		
Simple linear regression	0.031	0.045
Adjusted limited mixture models	0.031	0.044
Indirect mapping		
Multinomial logit model	0.030	0.044

Source: Kent, S., Gray, A., Schlackow, I., Jenkinson, C. and McIntosh, E. (2015). Mapping from the Parkinson's Disease Questionnaire PDQ-39 to the Generic EuroQol EQ-5D-3L: The Value of Mixture Models. Med Decis Making. Online First

OHS to EQ-5D-3L Work-in-progress (Oxford team)

	Estimation dataset (n = 51,800)	External validation dataset (n=75,322)
	Mean (SD)	Mean (SD)
Actual EQ-5D-3L index	0.558 (0.356)	0.561 (0.355)
	MSE	MSE
Direct mapping		
Simple linear regression	0.033	0.033
Two-part model	0.033	0.032
Adjusted limited mixture models	0.024	0.035
Indirect mapping		
Multinomial logit model	0.032	0.032

Direct versus indirect mapping

- There is no consensus about which method is preferable
- Evidence seems to suggest that overall both approaches are similar in terms of prediction accuracy
 - Differences observed favouring one method cannot be generalised to all instrument and patient populations
- Indirect mapping has some attractive properties:
 - Preserves logic of utility instruments such as EQ-5D
 - Provides more descriptive information than direct mapping
 - Compatible with different country-specific tariff sets

Additional statistical challenges ahead

- Performance of methods deteriorates as health states decline
- Does using more complex models (e.g. mixture models, Bayesian networks) improve performance of both direct and indirect methods?
- Need of better methods to deal with uncertainty
- Guidance on appropriate validation of mapping algorithms in practice

Overall we need to improve the reporting of these studies

MAPS reporting statement

- MAPS statement: <u>MApping onto Preference-</u> based measures reporting <u>Standards</u>
- Objective: to develop a checklist to promote complete and transparent reporting by researchers
- Methods: two-round Delphi survey with 48 representatives from academia, consultancy, HTA, and journal editors
- Results: a set of 23 essential reporting items was developed

MAPS reporting statement

Title and abstract

Item I:Title

Item 2: Abstract

Introduction

Item 3: Study Rationale

Item 4: Study Objective

<u>Methods</u>

Item 5: Estimation Sample Item 6: External Validation Sample Item 7: Source and Target Measures Item 8: Exploratory Data Analysis Item 9: Missing Data Item 10: Modelling Approaches Item 11: Estimation of Predicted Scores or Utilities Item 12: Validation Methods Item 13: Measures of Model Performance

> For each item examples of good reporting practice, an explanation and the rationale and relevant evidence is provided

Results

Item 14: Final Sample Size(s) Item 15: Descriptive Information Item 16: Model Selection Item 17: Model Coefficients Item 18: Uncertainty Item 19: Model Performance and Face Validity **Discussion** Item 20: Comparisons with Previous Studies Item 21: Study Limitations Item 22: Scope of Applications **Other** Item 23: Additional Information

MAPS working group

Stavros Petrou, Warwick University Oliver Rivero-Arias, Oxford University Helen Dakin, Oxford University Louise Longworth, Brunel University Mark Oppe, EuroQol Research Foundation Robert Froud, Warwick University Alastair Gray, Oxford University

Conclusions

- Mapping algorithms to translate non preference onto preference-based PROMs are available
 - HOWEVER, collection of primary data with the preferred utility instrument is desirable (<u>mapping as second-best</u>)
- Statistical methods have been evaluated to understand direct and indirect methods
 - No consensus in the literature
 - Additional statistical challenges ahead
- The development of the MAPS statement should improve the reporting (and quality?) of this studies in the future

